4-billion-year-old crystal offers oldest evidence of water on Mars Premium
The Hindu
Scientists have found evidence that water was present when the zircon crystal formed 4.45 billion years ago.
Water is ubiquitous on Earth – about 70% of Earth’s surface is covered by the stuff. Water is in the air, on the surface and inside rocks. Geologic evidence suggests water has been stable on Earth since about 4.3 billion years ago.
The history of water on early Mars is less certain. Determining when water first appeared, where and for how long, are all burning questions that drive Mars exploration. If Mars was once habitable, some amount of water was required.
We studied the mineral zircon in a meteorite from Mars and found evidence that water was present when the zircon crystal formed 4.45 billion years ago. Our results, published in the journal Science Advances today, may represent the oldest evidence for water on Mars.
Water has long been recognised to have played an important role in early Martian history. To place our results in a broader context, let’s first consider what “early Mars” means in terms of the Martian geological timescale, and then consider the different ways to look for water on Mars.
Like Earth, Mars formed about 4.5 billion years ago. The history of Mars has four geological periods. These are the Amazonian (from today back to 3 billion years), the Hesperian (3 billion to 3.7 billion years ago), the Noachian (3.7 billion to 4.1 billion years ago) and the Pre-Noachian (4.1 billion to about 4.5 billion years ago).
Evidence for water on Mars was first reported in the 1970s when NASA’s Mariner 9 spacecraft captured images of river valleys on the Martian surface. Later orbital missions, including Mars Global Surveyor and Mars Express, detected the widespread presence of hydrated clay minerals on the surface. These would have needed water.
The Martian river valleys and clay minerals are mainly found in Noachian terrains, which cover about 45% of Mars. In addition, orbiters also found large flood channels – called outflow channels – in Hesperian terrains. These suggest the short-lived presence of water on the surface, perhaps from groundwater release.

The Karnataka government has drafted a comprehensive master plan for the integrated development of Kukke Subrahmanya temple, the State’s highest revenue-generating temple managed by the Hindu Religious Institutions and Charitable Endowments Department. The redevelopment initiative is estimated to cost around ₹254 crore and aims to enhance infrastructure and facilities for devotees.