
“书生”来了!这款通用视觉技术体系能解锁实现AI长尾应用
Xinmin Evening News
图说:“书生”(INTERN)技术体系可以让AI模型处理多样化的视觉任务 来源/采访对象供图(下同)
新民晚报讯(记者 郜阳)今天,上海人工智能实验室联合商汤科技、香港中文大学、上海交通大学共同发布新一代通用视觉技术体系“书生”(INTERN),旨在系统化解决当下人工智能视觉领域中存在的任务通用、场景泛化和数据效率等一系列瓶颈问题。据悉,基于“书生”的通用视觉开源平台OpenGVLab也将在明年年初正式开源,向学术界和产业界公开预训练模型及其使用范式、数据系统和评测基准等。
“书生”由七大模块组成,包括通用视觉数据系统、通用视觉网络结构、通用视觉评测基准三个基础设施模块,以及区分上下游的四个训练阶段模块。作为中国古代读书人的经典形象,“书生”代表着一个通过不断学习、不断成长进而拥有各方面才能的人格化角色:从基础的知识技能学习开始,到对多种专业知识触类旁通,进而成长为拥有通用知识的通才。将全新的通用视觉技术体系命名为“书生”,意在体现它如同书生一般的特质,可通过持续学习,举一反三,逐步实现通用视觉领域的融会贯通,最终实现灵活高效的模型部署。
据介绍,任务通用和数据学习效率是制约当前人工智能发展的核心瓶颈问题。根据相关技术报告,一个“书生”基模型即可全面覆盖分类、目标检测、语义分割、深度估计四大视觉核心任务。在ImageNet等26个最具代表性的下游场景中,书生模型广泛展现了极强的通用性,显著提升了这些视觉场景中长尾小样本设定下的性能。
相较于当前最强开源模型(OpenAI 于2021年发布的CLIP),“书生”在准确率和数据使用效率上均取得大幅提升。具体而言,基于同样的下游场景数据,“书生”在分类、目标检测、语义分割及深度估计四大任务26个数据集上的平均错误率分别降低了40.2%、47.3%、34.8%和9.4%。“书生”在数据效率方面的提升尤为令人瞩目:只需要1/10的下游数据,就能超过CLIP基于完整下游数据的准确度,例如在花卉种类识别任务上,每一类只需两个训练样本,就能实现99.7%的准确率。